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Application of the Goore Scheme to Turbulence Control for
Drag Reduction ( I )

- Improvement of the Goore Scheme-
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We investigate the possibility of application of the Goore Scheme to turbulence control for
drag reduction. In Part I, we examine the performance of the original Goore Scheme by
applying it to a simple one-dimensional problem. For the application of the scheme to
turbulence control, we extend the scheme's capability so that it can treat multi-dimensional
problems and examine its validity theoretically. The convergence of the extended scheme with
a dynamic memory is faster by an order of magnitude than the original scheme. In Part n, we
apply the proposed scheme to reduce drag for turbulent channel flows through direct numerical
simulation.
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1. Introduction

Near-wall streamwise vortices have been
known to be responsible for the skin friction
caused by turbulence on a flat plate. For the last
decade, many researchers have tried to manipu­
late these structures by applying appropriate con­
trol inputs to reduce drag on the flat plate. Several
were very successful and they reduced drag by
more than 20% in their numerical simulations at
low Reynolds number (Choi et al. 1994, Bewley
and Moin 1995, Lee et al. 1997, Lee et al. 1998,
Koumoutsakos 1999). Their strategies are based
on physical intuition, control theories such as the
optimal or suboptimal control theory, or
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nonlinear neural networks. The performance of
these controls, however, depends on the choice of
control parameters such as the cost function.
Whenever a control scheme utilizing one of the
above schemes is tested to obtain drag reduction,
a great effort to find optimum control parameters
should be made to achieve the goal. Some control
schemes with wrongfully chosen parameters do
not achieve drag reduction at all. This undesir­
able performance is mainly due to the combina­
tion of the nonlinear nature of turbulence and the
complexity associated with control schemes.

On the other hand, a more systematic approach
using linear control theory has been adopted to
delay transition in a developing turbulent
boundary layer (Joshi et al. 1997, Bewley and Liu
1998). This linear control was later applied to a
fully developed turbulent channel flow with a
partial success (Cortelezzi et al. 1998, Lee et al.
2001). Because of its own limitation, the linear
control schemes are not expected to perform well
in fully developed turbulence.
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Fig. 1 Design of an automaton

next vote based on the reward or penalty. Here

each player is isolated from each other and even
does not know the distribution of the reward

probability function. If there exists a value of
percentage, f*, for which the reward probability

function has its maximum value, the Goore

Scheme can show the following. Regardless of the

number of the players, it is always possible to

construct a decision mechanism of each player
such that f* percentage of players always votes

yes after sufficient number of trials. Such a deci­

sion mechanism, also known as an automaton, is

shown in Fig. 1. Each player can have a memory
value ranging from -n to n except zero. If the

memory value is positive/negative, the player

votes yes/no. When a player is rewarded/

penalized, the position of the memory of the
player moves away from/toward zero. When the

memory hits n, it stays there until the player gets

penalized. When the memory value is 1 or -1, a

penalty can flip the sign, and only when this
happens, the player flips its vote from yes to no or

from no to yes depending on the past value of his

memory. This means that even when a player gets
a penalty, the player sticks to its previous vote

until he gets more penalties, enough to flip the

sign of his memory.

For example, when k out of N players vote yes,
the reward probability function r is a function of

k/N. Each player gets rewarded or penalized

with a probability of r or l-r. An example of a

reward function r (k/N), with its maximum at

k* / N =0.3, is shown in Fig. 2. With the autom­
aton of Fig. 1, after enough trials, the probability

that 30 percent of players always vote yes
approaches 1 when the maximum allowable
memory, n, is large enough. Such a probability

distribution was theoretically estimated by Tung

and K1einrock (1995). We briefly explain it here.

To control turbulence, which is a strongly

nonlinear dynamical system with an almost

infinite number of degrees of freedom, we need a

robust nonliner control scheme that can be ap­

plied to any nonlinear dynamical system even

with unknown mechanism. We find the Goore

Scheme to be a good candidate for such applica­

tion. The Goore Scheme is a reinforcement learn­

ing scheme that can be easily applied to any

nonlinear problem. The main advantage of this

scheme is that it does not require any specific

knowledge on how the system works. Instead,

only the control input and the measurable output
are necessary for the scheme to perform properly.

Recently, Tung and Kleinrock (1995) provided a

theoretical background for this scheme. We in­

vestigate the feasibility of the scheme for turbu­

lence control.
In Part I, we examine the original Goore

Scheme, and in Sec 2, we investigate its perform­

ance. We extend the scheme for multi­

dimensional problems and validate it

mathematically in Sec. 3. We also accelerate the
convergence of the scheme by introducing a

dynamically varying memory variable in Sec. 4

and present conclusions in Sec. 5. Therefore, the

Part I will serve as a good tutorial for the
improved Goore Scheme for application to any

control not restricted to turbulence control. In

Part n (Lee and Kim, 2001), we apply the

proposed Goore Scheme to the control of a tur­
bulent channel flow for drag reduction.

2. The Goore Scheme

Originally the Goore Scheme was developed to

control distributed systems. The scheme can be

best explained by the Goore Game of Tsetlin

(1964). Suppose there is a group consisting of N
players and a referee. Each time all players vote

yes or no with the referee counting the number of

yes votes. Depending on the reward probability
function r (f) which is a function of the percent­

age of the yes vote, f, the referee rewards each

player with probability of r or penalizes with

probability of l-r no matter what the player

voted. Then each player makes a decision for the

NO YES
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The persistence time, r" (k) can be estimated by
the method of Tung and Kleinrock (1995) as
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Fig. 3 Probability density function of the yes per­
centage in one-dimensional problem for 3
different memoryvalues: (a) n=5; (b) n=lO

(c) n=20. The thick solid line denotes the
numerically tested result and the thin solid
line denotes the theoretical estimate. The
number of entities N is 10.

fn(k)=fn(r(k/N)) = 1-':2r(1-( I~r r) (3)

where r (k/N) is the reward function. A detailed
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Fig. 2 One-dimensional reward function r (k/N) .

k·/N=0.3 and N=lO

Suppose that k out of N players vote yes and N
-k players vote no. k players who vote yes have
positive memory values ranging from I to n, and
the other N-k players have negative memory
values ranging from -n to J. Only when the
memory value of a player changes from 1 to -lor
from -I to 1, however, the number of yes votes
can change. Otherwise, the number of yes votes
remains the same. Therefore, consider a case in
which the number of yes votes changes. The
probability that the number of yes votes decreases
by one becomes kiN and the probability other­
wise is (N-k) IN. Such a process can be modeled
as a Markov chain (Karlin & Taylor, 1975).
Hence the equilibrium probability that k out ofN
players votes yes becomes

which means that, as N increases, the distribution
becomes normal and has a maximum value at k=
N /2. We have not considered how much time
each state spends. If the time spent at each state is
r,,(k), the probability that the system stays at k­
state becomes
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derivation can be found in Tung and Kleinrock
( 1995) . Using this estimate, we obtain fl> (k) :

For the reward function given in Fig. 2, fl> (k)
obtained from a numerical test and theoretical

estimation using Eq. (4) are compared in Fig . 3

for three different memory sizes, n=5, 10,20 with

N = 10. As n increases, both numerical and theo­

retical estimates for the peak probability ap­

proach I at k/N = 0.3. It can be easily seen from

the theoretical estimation that as n approaches
infinity, fl> (k) approaches a delta function

located at k* / N .

!P (k)
(N) I ( I ( r (k/N> )n)
k 1-2r(k/N> - I- r(k/ N> (4)

N (N) I (( r (k'/N> )")
il''1;1 k' 1-2r(k'/N> 1- t-r (k'/N>

does the pr obability that the system stays at the

optimum point approaches I after enough trials )
The following two-dimensional reward function

r(k1/Nt. kz/Nz) =0.35exp ( -( ktlNl-;2ktlNlr
-( k2lM-;2kilN2f )+0.3 (5)

which has a peak value at kl* / N1=0.3, M/N2= 0.
8 as shown in Fig. 4 is chosen. For simplicity, we

choose N1=N2=N. Now, a state is defined by a

point in the two-dimensional parameter space

spanned by (ktlN, k2/N ) . Since the incident

visiting a state in each dimension is independent

of each other, the probability that (k t/N, k2/ N )
state is visited is the product of probabilities that

each state is visited in each dimension.

3. Extension for Multidimensional
Application

The original Goore Scheme explained in the

prev ious section is applicable only to one­

dimensional problems. Consider an extension of
the schem e to a multi-dimensional pro blem. Sup­

pose there are L groups, each consisting of N1

players with 1=1, . . ., L. A reward function r is

now a function of L parameters, which are the
yes-vote percentages of each group. If there exists

an optimum point in the L-dimensional space,

(ki / Ni. kt/N2, ..., kt/NL), can we expect the

same performance with the same automata Ci, e.;
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Fig.4 Contour plot of the two-dimensional reward
function, Eq J 5)
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Fig. 5 Contours of the joint PDF between the y es

percentages of each group in a two-
dimensional problem. (a) Numerical result.
(b) Theoretical estimation. The same contour
levels are used with the level gap of 0.05
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(6)

If we can neglect the possibility of a state

changing from (kJN, k2/N) to ((kl±l)/N,
(k 2± 1)/ N) simultaneously, whose probability
approaches zero with N going to infinity, the time

spent at the state can be estimated by the same
method as in the one-dimensional problem.
Therefore,

This estimation of the persistence time for multi­
dimensional problems is possible since the players
are isolated from each other and do not know of
each other's existence. Thus, the automaton of
each player is influenced through r only. Using
this, we can estimate the expectation probability

rp (kl/N, kl/N) as

(N)(N) I (I ( r(kJN, kJNJ )')
~/k kJNJ- k. k, 1-2r(k,fN, kJN) - 1-r(kJN,kJNJ
\ uN, •• (N)(S) 1 (I ( r(kllN, k2/NJ )')

.~..J.. k; ki Hr(ki/N, ki/NJ - l-r(ki/N, ki/NJ

(8)

As n increases, the probability density function
approaches a delta function located at (kt / N,
ki / N). For the reward function of Fig. 4, a
numerically obtained result is shown with the
theoretically estimated distribution in Fig. 5.
Here, N=IO and n=IO. We intentionally choose
n= 10 for which the expectation probability dis­
tribution has a peak value of less than one. Also
the case of n= 10 has a finite area of nonzero
probability value since an almost delta-function
distribution is observed when n=20. The peak
location is correctly captured in both theoretical
and numerical results, and then distributions are
similar. Without a loss of generality, it is
straightforward to extend the analysis to problems
with L greater than two. For an L-dimensional
problem, the probability that (kIfN; "', kdNL )

state is visited becomes

and the expectation probability becomes

(NI) ('N,) 1 ( (r(kJM kJNtl )')
kl ... k,I-2rlkJ,v" -'. IJNtl 1- 1-'lkJN,,· kuNtl

~(kJN" -'.kJNtl- H H 1"/" '/")
~' ("') ("') 1 ( ( r .. ",. ''', I, l'< )')
.,.....~ ki ..·.v. 1 2r(k:lN""'"fdNtl 1- Il-rU.iN,,· -, kllN,)

(10)

4. Convergence Acceleration

In the previous section, it has been shown that
as the memory size n increases, the peak prob­
ability increases. This just means that the time
spent at the optimum state increases relative to the
time spent at nonoptimum states. Furthermore, to
achieve this, a much longer transient time should
be spent before the system approaches an equilib­
rium state, For this scheme to be applied to a
dynamical system which has a short dynamical
time scale, the transient period should be
minimized, Otherwise, the scheme will never catch
up with the variation of the dynamical system at
hand. To reduce the transient period without
degradation of the peak equilibrium probability,
we propose a variable memory size n (t). Instead
of keeping n fixed, we let n vary with the scheme's
performance. For example, when the reward
function increases, n increases as well, and vice
versa. This allows the system to spend more time
near the optimum state and to quickly divert from
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Fig. 6 Dynamic memory functions as functions of
the reward function: dashed line, n=20; thin

solid line, n=s+s( r~g.3r thick solid

line, n=3+7( r~g.3r
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Initial convergence behavior for the three cases

of the same two-dimensional problem of the pre­

vious section is shown in Fig. 7 Compared to the

constant n case, the systems with variable

memories converge much more quickly to the

optimum state (kt!N =0.3, kNN =0.8) by an
order of magnitude. Furthermore, the peak prob­

ability increases too. However, in cases with

several local optima, the scheme might spend too

much time in one optimum before finding a glob­

aloptimum.

Next, we consider a one-dimensional problem
with a large number of players N. With the

memory size fixed at 20, as N increases from 10 to

40, the peak probability decreases as shown in

Fig. 8(a). When N=30 and 40, even the peak
location is not correctly predicted. This is due to

the fact that as N increases, the resolution liN
decreases so that it becomes more difficult to

distinguish k*IN from (k* ± 1)IN. Increasing n
cannot fix this problem since as long as n is larger

than 20, the performance does not improve any

further and even deteriorates with a longer tran­

sient period. Dynamic memory size was tested to
mitigate this problem, resulting in a partial im­

provement as shown in Fig. 8 (b). The correct

peak location is captured, but the peak probabil­

ity does not increase by much. To resolve this
problem, the groups of 20, 30 and 40 players split

into 2, 3, and 4 groups consisting of 10 players,

respectively, and a multidimensional version of

the scheme was applied with the result shown in
Fig. 8 (c). The reward function for each case is

r(kIiN, k21N, ... , kMIN)

=0.35exp( - ~ (kmlN - k:'1N )2) +0.4 (14)
m=1 0.2

with M = 1 through 4 and kt IN =0.3, kilN=0.
8, k3*IN=0.6, kt IN=0.2. Optimum peak
locations for each case are correctly captured with

variable memory sizes including the case with

fixed n (Fig. 6).
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nonoptimum states. For the two-dimensional re­

ward function of Fig. 4, we tested the following
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Fig. 7 Convergence performance of the yes percent­
age in a two-dimensional problem for 3 dif­
ferent dynamic memory functions: (a) n=20;

(b) n=5+5(r-0.3)/0.2)2; (c) n=3+7

( (r -0.3) 10.2) 2. Thin solid line denotes kll

N and thick solid line denotes k21N
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